
FA2023 Week 07 • 2023-10-12

Crypto I

Anakin and Sagnik



Announcements

– Lockpicking Support Group!
– Come practice lockpicking
– Mondays 8-9 PM



ctf.sigpwny.com
sigpwny{n0t_that_crypt0_but_th3_0th3r_0n3}



Outline

Basics

XOR

Diffie-Hellman



Scoreboard



Get Involved Callout

Looking for people to:

– run meetings

– plan events

– create challenges

– get more involved in the club :0

– Let us know if interested!



Section 1

Basics



What is Crypto Anyways?



Why Do We Care?



Crypto in Ye Olden Days

– Relied on simple patterns

– Hard / annoying to break by hand, easy to break by
computer

– Examples:
– Caesar Cipher (rot k)

– a → c, b → d, . . . , y → a, z → b (rot 2)

– Substitution

– Create a table mapping each letter to another
– Generalization of Caesar Cipher

– Many More

– All insecure!!



Data Representation

– TL;DR: computers store things in binary (0s and 1s),
and we have different ways of representing this

– Look at the challenge source if given and mimic what
they do

– Tip: In Python, always work with bytes / bytestrings,
never with normal strings (Python 3.8+)



Conversion Cheatsheet
This is hard to read, download the slides!!

Format Description From Bytes To Bytes

base64
uses printable letters to
encode more complex binary

base64.b64encode base64.b64decode

hex uses symbols 0-9, A-F
bytearray.hex(),
binascii.hexlify()

bytes.fromhex(),
binascii.unhexlify()

integer normal integers
Crypto.Util.number.bytes_to_long
(PyCryptoDome),
int.from_bytes

Crypto.Util.number.long_to_bytes
(PyCryptoDome),
int.to_bytes



Section 2

XOR



Symmetric Encryption



XOR

A B A⊕ B
0 0 0
0 1 1
1 0 1
1 1 0



XOR

– XOR has some really nice properties that make it
perfect for symmetric encryption

– Say M is some message as a bitstring, K is some key

– Then let C = M⊕ K be a ciphertext

– Properties:

– Order doesn’t matter: M⊕ K = K⊕ M
– Group as needed: M⊕ (K⊕ K) = (M⊕ K)⊕ K
– 0 is the identity: M⊕ 0 = M
– Self Inverse: K⊕ K = 0

– All of this means C⊕ K = M⊕ K⊕ K = M⊕ 0 = M



Overview of Easy Some Attacks
– For certain reasons, in general XOR is really really
hard to break

– Without more information, you need to try 2λ guesses to
break a bitstring of length λ

– Usually you need to know some information about the
plaintext

– Known plaintext + ciphertext pair
– Properties like language (common letters / words)

– You may need to know some information about the key

– Really short keys are able to be brute forced
– Flag Formats: sigpwny{



Section 3

Diffie-Hellman



Modular Arithmetic

– Numbers can get really big really fast

– We use modular arithmetic to deal with this

– Modular arithmetic is arithmetic with remainders after
division

– Keep taking remainders as you do arithmetic

– If we do computation mod n that means we will take
remainders after division by n



Remainders
– Assume we have some number n. We are going to do some
computation mod n

– For now, say n = 101

131+ 140 ∗ (102)2000 ≡ 131+ 39 ∗ (102)2000 (mod 101)

≡ 30+ 39 ∗ (102)2000 (mod 101)

≡ 30+ 39 ∗ (1)2000 (mod 101)

≡ 30+ 39 (mod 101)

≡ 69 (mod 101)



Discrete Log

– If ab ≡ X (mod p), b = the discrete log of X with base a

– Given some random X and a, finding b is really hard to
compute for large primes p

– This Discrete Log Problem (DLP) is the basis for many
modern cryptography standards



Trapdoors

– Think of the DLP as a trapdoor

– Easy to enter, hard to exit

– If 2n ≡ 79 (mod 97), what is n?

– n = 15

– Imagine this with larger primes. Multiplication is
easy, logs are hard

Diffie-Hellman takes advantage of this!





Painting with Numbers
– Let g be a public number we call a generator and p be
some public prime

– Alice generates secret a and computes A ≡ ga (mod p)

– Bob generates secret b and computes B ≡ gb (mod p)

– Alice sends Bob A and Bob sends Alice B

– Alice computes Ba (mod p)

– Bob computes Ab (mod p)

Alice and Bob now have the same key!

Ab ≡ (ga)b ≡ gab ≡ (gb)
a ≡ Ba (mod p)



Overview of Some Attacks
Remember, discrete log in general is hard

– Small Primes are easy to bruteforce

– You have a computer, use it!

– “Oracle” attacks: access to a special machine that
leaks information

– Write out what do and don’t know as equations
– Do not be afraid of pen and paper

– Primes are generated in specific ways

– “Smooth Primes” p where p− 1 has many factors
– Pohlig-Hellman, Pollard’s Rho
– More on this next week with advanced factoring!

https://rtullydo.github.io/cryptography-notes/section-elgamal.html
https://en.wikipedia.org/wiki/Pohlig%E2%80%93Hellman_algorithm
https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm_for_logarithms
https://crypto.stanford.edu/pbc/notes/numbertheory/crt.html


Misc Chals

– Alot of Crypto people like cute little math / puzzles,
many challenges are just "reverse the math"

– Solve some polynomial equations
– Linear algebra
– Undo Randomness

– Is it really random? Does the randomness really have an
effect on anything?

– Strategy: Just try things, look for patterns, more like
math-y reverse engineering. Don’t be afraid to just
start.



Tools!

– Python + SageMath is your friend

– PyCryptodome is an extremely useful Python crypto
library

– PwnTools will allow you to automate parts of your
attacks

– Google + StackOverflow (“how to crack DH with . . .”)

– Installation is annoying, use the CryptoHack Docker

https://doc.sagemath.org/html/en/index.html
https://pycryptodome.readthedocs.io/en/latest/
https://docs.pwntools.com/en/stable/
https://github.com/cryptohack/cryptohack-docker


Practice @ CryptoHack

https://cryptohack.org/


Next Meetings

2023-10-15 — This Sunday

– Crypto II

– More Diffie-Hellman + RSA

2023-10-19 — Next Thursday

– PWN I with Sam

2022-10-22 — Next Sunday

– Pwn II with Kevin



ctf.sigpwny.com
sigpwny{n0t_that_crypt0_but_th3_0th3r_0n3}

Thanks for listening!


	Basics
	XOR
	Diffie-Hellman

