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Announcements

- Order club t-shirts!
- sigpwny.com/shirt2024

- Japan House social this Sunday!!



http://sigpwny.com/shirt2024

ctf.sigpwny.com

sigpwny{when pigs fly}
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EDUCATIONAL BACKGROUND
PAST EXPERIENCE
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INTERVIEW PERFORMANCE

ENTHUSIASM FOR DEVELOPING
AND EXPANDING THE USE OF
THE DEEPAIHIRE ALGORITHM

AN ANALYSIS OF OUR NEW
Al HIRING ALGORITHM HAS
RAISED SOME CONCERNS.
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Background
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What is Al?




What is Al?




How do we create Al models?

- Perform gradient descent (optimization on problem to
minimize error)

Big learning rate Small learning rate
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How do we create Al models?

- Iterate over training data multiple times
- each iteration is known as an epoch

- use loss functions to determine the performance of a model
- higher loss means more error present in the model’s predictions
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How can Al be insecure?

- Dataset issues
- Data may be mislabeled/collected incorrectly/preprocessed wrong
- There may also be malicious data in large datasets

- Model issues
- Models may be vulnerable to malicious input (adversarial examples)
- They might also be vulnerable to extraction/trojaning attacks
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Poisoning
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Dataset Poisoning

- Malicious data present in a dataset during training
- Model learns incorrect information from the dataset
- Only possible if attacker has access to dataset before model

creation
- Also important to consider in situations where model is trained using

human feedback
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Dataset Poisoning

Artist

Original artwork

GLAZE

Feature extractor (D)
Target style (T)

Style-specific
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Cloaked artwork

Fails to mimic
artist
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Evasion Attacks
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Adversarial Examples

- Malicious input designed to fool a model into undesired
behaviour

- Imperceptibly changed input - the goal is to trick a model into
behaving in ways it shouldn’t
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Adversarial Examples

Class: airliner




Adversarial Example Generation

- How do we create noise that optimally fools a given model?
- The answer is... complicated (and an ongoing area of research!)

- The most intuitive methods use gradient ascent, where input
data is adjusted to maximize loss
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Adversarial Example Generation

- You don’t always need to have access to the model or its
gradients
- There are many papers devoted to showing various attacks on black
box models
- Attacks are transferable, meaning that attacks that work on

one model can often transfer to an unknown model

- You can use surrogate models trained on similar data to create
adversarial examples against an unknown model

- These methods usually require oracle access, where you have
access to the output of the model you want to attack
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Adversarial Defenses

- The most common defense is adversarial training
- incorporate adversarial examples into the training process
- provides data that helps the model disregard nonrobust features that
may be present

- There are also defenses that prevent the attacker from gaining

access to gradient information
- one example is defensive distillation
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Extraction Attacks
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Model Extraction

- These attacks focus on recreating a model given query
access to a private model

- The created model may not be as accurate, but can approach
the accuracy of the original model

- These models can then be maliciously used or used Iin
combination with other attacks
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CTF Example

i



Important Tools

pytorch
torchvision
torchattacks
cleverhans
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pwhnies_please

welcome to the pwny club! here's a pwny.
you need to sneak them past the bouncer.
can you give them a costume to wear?
don't overdo it, or the bouncer will see right through it!

Choose file YZR/CRT D

Hmm, alright, you've gotten O horses into the club.
model

site source code



pwhnies_please

criterion = nn.CrossEntropyLoss() #define loss function
for i, (inputs, labels) in enumerate(dataloaders['test']):
inputs = inputs.to(device) #move to gpu

labels = labels.to(device) #move to gpu

#generate adversarial examples
inputs = pgd(model_nonrobust, inputs, labels, criterion, k=15, step=0.1, eps=0.4, norm=2)
outputs = model_nonrobust(inputs)
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Next Meetings

2024-03-31 - This Sunday

- Japan House social!!

2024-04-04 - Next Thursday

- No meeting because of CypherCon
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ctf.sigpwny.com
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Meeting content can be found at
sigpwny.com/meetings.
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